Crystal Structures of $\mathbf{N a}_{\mathbf{2}} \mathbf{N b}_{\mathbf{4}} \mathbf{O}_{\mathbf{1 1}}$ and $\mathrm{CaTa}_{\mathbf{4}} \mathrm{O}_{\mathbf{1 1}}$

LENA JAHNBERG
Institute of Inorganic and Physical Chemistry, University of Stockholm, S-113 86 Stockholm, Sweden

Received September 8, 1969

Abstract

The crystal structures of $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$ and $\mathrm{CaTa}_{4} \mathrm{O}_{11}$ have been determined from three-dimensional single-crystal data. The space group of the former is $C 2 / c$ and the cell dimensions $a=10.840, b=6.162, c=12.745 \AA$, and $\beta=106.22^{\circ}$. The symmetry of the latter is $P 66_{3} 22(a=6.213$ and $c=12.265 \AA)$. Both structures contain layers of pentagonal niobium (tantalum) oxygen bipyramids sharing edges. These layers are connected to form a threedimensional network by octahedrally coordinated niobium (tantalum) atoms and by sodium (calcium), the coordination figures of which are flattened octahedra with one (two) oxygen(s) outside the large face(s).

Introduction

The knowledge of the structural chemistry of niobium oxides is largely due to the studies by Wadsley (1). The crystal structures of the alkali titanum niobates KTiNbO_{5} and $\mathrm{KTi}_{3} \mathrm{NbO}_{9}$ were published by him (2). Another alkali niobate and a closely related tantalate will be reported in this paper.

During studies of the system $\mathrm{CaO}-n \mathrm{Ta}_{2} \mathrm{O}_{5}$ ($n \geqslant 1$) the compound $\mathrm{CaTa}_{4} \mathrm{O}_{11}$ with hexagonal symmetry was found, besides the earlier reported $\mathrm{CaTa}_{2} \mathrm{O}_{6}$ (3), (4). The same phase was reported by Gasperin (5), who also gave the positions of the tantalum atoms. During the study of the system $\mathrm{NaNbO}_{3}-\mathrm{Nb}_{2} \mathrm{O}_{5}$ a phase with composition $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$ was prepared by Andersson (6). Although it is monoclinic, the strong reflections of the Weissenberg photographs around [010] showed a strong resemblance to the reflections around [100] of the hexagonal compound. The two structures have been determined and will be described below.

Experimental

$\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$ was prepared hydrothermally from $\mathrm{NaNbO} \mathrm{N}_{3}$ and $\mathrm{Nb}_{2} \mathrm{O}_{5}$ by Andersson (6). The amount of sample obtained was quite small and no chemical analysis was made. The composition which was concluded from the starting composition and from the observed density has been essentially confirmed
from the structure determination described below. The method of preparation, however, does not exclude the possibility of hydroxide partly substituting for oxygen with a corresponding deficiency in the content of sodium (v. inf.).

Weissenberg films were taken around the monoclinic axis with an integrating camera using $\mathrm{CuK} \alpha$ radiation. The $h 0 l, h 1 l, h 2 l$, and $h 3 l$ reflections were recorded. The unit cell dimensions as obtained by Andersson (6) from Guinier $\mathrm{CuK} \alpha$ photographs are $a=10.840, b=6.162, c=12.745 \AA$, and $\beta=106.22^{\circ}$.
$\mathrm{CaTa}_{4} \mathrm{O}_{11}$ was prepared from CaCO_{3} (Merck's Reagent, p.a., 99.7%) and $\mathrm{Ta}_{2} \mathrm{O}_{5}$ (Koch-Light Laboratories Ltd., 99.9%). An intimate mixture was pressed into a tablet and melted in an electric arc furnace in an argon atmosphere. The crystals obtained from this sample were rather irregular and attempts to correct the data for absorption were not very successful. Crystals were later made according to the method described by Gasperin (5). $\mathrm{Ta}_{2} \mathrm{O}_{5}$ and CaCO_{3} were mixed with melted and powdered boric acid and heated in air in a platinum crucible at about $1100^{\circ} \mathrm{C}$. Hexagonal plates of $\mathrm{CaTa}_{4} \mathrm{O}_{11}$ were formed at the surface of the melt.

The density of the crystals was determined from the apparent loss of weight in benzene.

Weissenberg photographs wert taken of an irregular crystal of the first sample, using CuK radiation and multiple film technique. The intensities were visually estimated with a standard scale.

TABLE I
Powder Pattern of $\mathrm{CaTa} \mathbf{4}_{4} \mathrm{O}_{11}$

I	$\sin ^{2} \theta_{\text {obs }}$	$h k l$	$\sin ^{2} \theta_{\text {calc }}$
$s t$	0.01575	002	0.01578
$s t$	0.02046	100	0.02049
m	0.02440	101	0.02444
w	0.03624	102	0.03627
w	0.05592	103	0.05599
m	0.06305	004	0.06310
$v s t$	0.06538	111	0.06542
$v s t$	0.07726	112	0.07725
w	0.08356	104	0.08359
$v w$	0.0859	201	0.08591
m	0.09689	113	0.09697
$v w$	0.09767	202	0.09774
$v w$	0.11747	203	0.11746
w	0.14197	006	0.14198
$v w$	0.14346	210	0.14344
m	0.14739	211	0.14739
m	0.16003	115	0.16007
w	0.17890	213	0.17894
$s t$	0.18440	300	0.18443
w	0.20019	302	0.20020
m	0.20350	116	0.20345
$v w$	0.20649	214	0.20654
$v w$	0.21373	107	0.21375
$v w$	0.22392	206	0.2395
w	0.24197	215	0.24204
$s t$	0.24756	304	0.24753
m	0.24989	221	0.24985
w	0.25244	008	0.25241
m	0.25478	117	0.25472
m	0.26174	222	0.26168
$v w$	0.26649	310	0.26639
w	0.27026	311	0.27034
w	0.28139	223	0.28140
$v w$	0.30188	313	0.30189

The symmetry was found to be hexagonal and exposures were made with the crystal rotated both around the a and the c axis. The cell dimensions

$$
a=6.213 \pm 1 \quad \text { and } \quad c=12.265 \pm 1 \AA
$$

were derived from a Guinier powder pattern registered with monochromatized $\mathrm{CuK} \alpha_{1}$ ($\lambda=1.54050 \AA$) radiation and with potassium chloride ($a=6.2930 \AA$) as an internal standard. The indexed powder pattern is given in Table I.

In the final structural refinement use was made of single-crystal data from an almost quadratic piece of an hexagonal plate from the second preparation. The size was approximately $0.05 \times 0.05 \times$ $0.006 \mathrm{~mm}^{3}$. The $h 0 l-h 4 l$ reflections were collected with $\mathrm{CuK} \propto$ radiation and an integrating Weissenberg
camera using multiple film technique. The intensities were visually estimated with a standard scale and corrected for absorption by a numerical integrating procedure.

Scattering factor curves for $\mathrm{Nb}^{\mathbf{5 +}}$ and $\mathrm{Ta}^{\mathbf{5 +}}$ were taken from Cromer and Waber (7). For Na^{+}and Ca^{2+} values from the Int. Tab. (Boys, and Thomas and Umeda, respectively) (8) were used and for O^{2-}, values given by Suzuki (9). The calculations were executed with the computers FACIT EDB, CD 3600, and IBM 1800.

Derivation of the Structures

Weissenberg photographs of $\mathrm{CaTa}_{4} \mathrm{O}_{11}$ around the c axis showed the Laue symmetry to be $6 / \mathrm{mmm}$. With $00 l$ reflections existing caly for $l=2 n$ this gave the space group $P 6_{3} 22$. The observed density was $7.58 \mathrm{~g} \mathrm{~cm}^{-3}$. Two formula units $\mathrm{CaTa}_{4} \mathrm{O}_{11}$ correspond to a calculated density of $7.61 \mathrm{~g} \mathrm{~cm}^{-3}$. From Patterson projections tantalum positions were derived which were in agreement with those given by Gasperin (5). The positions

$$
6(g): x, 0,0 ; 0, x, 0 ; \bar{x}, \bar{x}, 0 ; \bar{x}, 0, \frac{1}{2} ; 0, \bar{x}, \frac{1}{2} ; x, x, \frac{1}{2}
$$

and

$$
2(c): \frac{1}{3}, \frac{2}{3}, 4 ; \frac{2}{3}, \frac{1}{3}, \frac{3}{4}
$$

in $P 6_{3} 22$ were chosen for the eight tantalum atoms. The combination of the conditions limiting possible reflections for these two positions was present in the data. An electron density projection along [100] gave $x=0.35$. The tantalum positions thus derived in the planes $z=0$ and $z=\frac{1}{2}$ showed a great resemblance to the metal atom positions of $\mathrm{U}_{3} \mathrm{O}_{8}(10)$. The length of the c axis $(12.27 \AA$) corresponded to the sum of two $\mathrm{O}-\mathrm{Ta}-\mathrm{O}$ distances (ca. $2 \times 4 \AA$) and two distances between opposite faces of TaO_{6} octahedra (ca. $2 \times 2.3 \AA$). It was found to be likely that the structure contained layers of pentagonal TaO_{7} bipyramids sharing edges, and that these layers were connected by octahedrally coordinated Ta . The structure could not be quite confirmed with the data available.

At this point the compound $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$ was discovered to have a great similarity to $\mathrm{CaTa}_{4} \mathrm{O}_{11}$. The symmetry was monoclinic with $h+k=2 n$ for $h k l$ reflections and $l=2 n$ for $h 0 l$ reflections. This is characteristic of the space groups $C c$ and $C 2 / c$. The observed density was $4.75 \mathrm{~g} \mathrm{~cm}^{-3}$ and the calculated, $4.82 \mathrm{~g} \mathrm{~cm}^{-3}$ with four formula units $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$ (6). The cell parameters resembled those of the C centered orthohexagonal unit cell with four formula units that could be chosen for $\mathrm{CaTa}_{4} \mathrm{O}_{11}$.

TABLE II
Atomic Parameters in $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$-Space Group $C 2 / c\left(0,0,0 ; \frac{1}{2}, \frac{1}{2}, 0\right)+$

Atom	Position	x	y	z	B
$8 \mathrm{Nb}(\mathrm{I})$	$8(f)$	0.1825 ± 2	0.5658 ± 9	0.2499 ± 2	1.14 ± 6
$4 \mathrm{Nb}(\mathrm{II})$	$4(e)$	0	0.1140 ± 13	\pm	0.93 ± 7
$4 \mathrm{Nb}(\mathrm{III})$	$4(d)$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1.58 ± 9
8 Na	$8(f)$	0.082 ± 2	0.253 ± 3	0.996 ± 2	3.3 ± 4
8 O (I)	$8(f)$	0.233 ± 2	0.512 ± 5	0.407 ± 2	1.0 ± 3
8 O (II)	$8(f)$	0.157 ± 2	0.601 ± 4	0.090 ± 1	0.6 ± 3
8 O (III)	$8(f)$	0.081 ± 2	0.135 ± 4	0.410 ± 2	0.8 ± 3
8 O (IV)	$8(f)$	0.125 ± 2	0.880 ± 5	0.251 ± 2	1.0 ± 4
$8 \mathrm{O}(\mathrm{V})$	$8(f)$	0.159 ± 2	0.254 ± 6	0.218 ± 2	1.2 ± 4
$4 \mathrm{O}(\mathrm{VI})$	$4(e)$	0	0.505 ± 9	$\frac{1}{4}$	1.8 ± 7

$\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}: \quad a=10.84, \quad b=6.162, \quad c=12.75 \AA$,
$\beta=106.2^{\circ}(6)$.
$\mathrm{CaTa}_{4} \mathrm{O}_{11}: \quad a=10.76, \quad b=6.213, \quad c=12.27 \AA$.
For the strong reflections of $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$ a mirror plane corresponding to orthorhombic symmetry could be traced and the intensity distribution for these reflections was similar to that of $\mathrm{CaTa} \mathrm{O}_{11}$. From thesc facts it was concluded that the transition metal atom arrangement should be almost the same in both structures. The following positions in $C 2 / c$ were used to describe the tantalum atom positions of $\mathrm{CaTa}_{4} \mathrm{O}_{11}$ in the monoclinic symmetry:
$\left(0,0,0 ; \frac{1}{2}, \frac{1}{2}, 0\right)+$
$8(f): x, y, z ; \bar{x}, \bar{y}, \bar{z} ; \bar{x}, y, \frac{1}{2}-z ; x, \bar{y}, \frac{1}{2}+z\left(x \approx \frac{1}{6}\right.$, $y \approx \frac{7}{12}, z \approx \frac{1}{4}$),
4(e): $0, y, \frac{1}{4} ; 0, \bar{y}, \frac{3}{4}\left(y \approx \frac{1}{12}\right)$,
$4(d): \frac{1}{4}, \frac{1}{4}, \frac{1}{2} ; \frac{3}{4}, \frac{1}{4}, 0$.
These values were adopted as starting parameters for the niobium atom arrangement of $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$. An electron density projection along [010] confirmed these positions and also gave approximate x and z parameters for 8 Na and 240 in $8(f)$. The rest of the O-atom coordinates were derived geometrically from a suggested structure. This trial structure which gave a rather good agreement for the strong reflections but too low values for the weak ones, was refined by the method of full-matrix least squares. Six very strong reflections were excluded in the final stages of refinement. These were measured with low accuracy and also likely to suffer from extinction. The atomic coordinates and temperature factors thus obtained are given in Table II. The R value for the observed reflections was 7.2%. Observed and calculated structure factors are given in Table III, and interatomic distances in Table VI.

It was stated above that the difficulty to perform a chemical analysis of the $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$ sample and
the hydrothermal conditions employed in the synthesis left open the possibility of some deviation from the stoichiometric formula, with a partial substitution of hydroxide for oxygen. The composition $\mathrm{Na}_{2-x} \mathrm{Nb}_{4} \mathrm{O}_{11-x}(\mathrm{OH})_{x}$, corresponding to a slightly lower content of sodium than the ideal formula used in this paper, cannot be excluded by the present structure determination. In this connection it may be stated that the B parameter of the sodium atom is somewhat high. This might be due to a deficiency in the occupancy of the sodium sites but in consideration of the low accuracy of the "thermal parameter," such an interpretation is not a conclusive one.

The new set of integrated data around [100] was now used for the calculations on $\mathrm{CaTa}_{4} \mathrm{O}_{11}$. An electron density projection along this axis derived from phase angles given by the tantalum atoms only was not easily interpreted, but some peaks indicated calcium and oxygen positions in agreement with those geometrically derived. The parameters were refined by the method of least squares with a program for the computer CD 3600 which allowed hexagonal symmetry and a full matrix to be used. However, the strongest reflections systematically showed too low values of $F_{\text {obs }}$ which suggested the presence of secondary extinction. An effort was made to correct for this effect according to Zachariasen's (11) formula. It was not successful since there was probably too much error in the estimation of these strong reflections. They were therefore excluded in the final refinement. The number of reflections to be excluded was chosen so as to give a weight analysis without visible trend. The parameters and standard deviations derived from this refinement with 134 independent reflections are given in Table IV. The R value obtained was 3.9%. All observed reflections (177) gave an R value
of 10.5%. Observed and calculated structure factors are given in Table V, and interatomic distances in Table VI. In a refinement with all observed reflections the standard deviations were approximately doubled. Only the Ta coordinate shifted a little more than the value of the standard deviation.

Description and Discussion of the Structures

The structures contain layers of pentagonal MeO_{7} bipyramids ($\mathrm{Me}=\mathrm{Nb}$ or Ta) sharing edges equatorially. The layers which contain threequarters of the Me atoms are repeated with an interval of $c / 2$ by the glide plane and the 6_{3} axis, respectively. Figure 1 shows the atoms in the planes
$z=0.25$ and $z=0.75$ for $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$. One oxygen atom position $[\mathrm{O}(\mathrm{V})]$ deviates from the $z=0.25$ plane by about $0.4 \AA$. These oxygens are marked with a plus or minus in Fig. 1, indicating whether they are above or below the planes. [The corresponding position in $\mathrm{CaTa}_{4} \mathrm{O}_{11}$ is O (III).] One of the five metal-oxygen distances in the pentagons is longer than the other four: around $2.40 \AA$ compared with $1.96-2.07 \AA$ for the $\mathrm{Nb}-\mathrm{O}$ distances, and $2.46 \AA$ compared with 1.98 and $2.04 \AA$ for the $\mathrm{Ta}-\mathrm{O}$ distances. Thus, the layers could also be regarded as consisting of very deformed octahedra sharing corners. The oxygen-oxygen distances are short for the common edges of the pentagonal bipyramids, 2.39-2.43 \AA. Remaining oxygen-oxygen distances are $2.60-3.06 \AA$.

TABLE III
Observed and Calculated Structure Factors for $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$ Asterisk reflections were not included in the refinement. The columns give $h, k, l,\left|F_{\text {obs }}\right|$ and $\left|F_{\text {calc }}\right|$. For all nonobserved reflections, $\left|F_{\text {calc }}\right|<\min$. observable $\left|F_{\text {obs }}\right|$.

* 0	0	2	234	281	3	1	-12	137	153	9	1	-1	158	149	6	2	-5	214	189	1	3	6	127	119
-0	0	4	459	580	3	1	-11	195	192	9	1	0	137	140	6	2	-4	241	226	1	3	7	121	105
0	0	6	319	350	3	1	-10	132	146	9	1	2	149	145	6	2	-3	232	217	1	3	10	87	71
0	0	8	407	437	3	1	-8	222	252	9	1	3	136	132	6	2	-1	253	218	1	3	12	87	73
0	0	10	103	110	3	1	-7	274	321	9	1	4	121	113	6	2	0	241	220	3	3	-15	57	68
0	0	12	328	318	3	1	-6	231.	256	9	1	6	105	102	6	2	1	197	189	3	3	-13	208	213
0	0	14	112	116	3	1	-4	163	164	9	1	7	125	117	6	2	3	208	189	3	3	-11	79	84
2	0	-12	91	84	3.	1	-3	286	314	9	1	8	107	100	6	2	4	222	215	3	3	-9	283	285
2	0	-8	106	115	3	1	-2	316	323	11	1	-10	62	71	6	2	5	193	175	3	3	-7	159	165
2	0	-4	132	133	3		0	315	324	11	1	-2	92	93	6	2	7	148	139	3	3	-5	343	393
2	0	-2	84	71	3	1	1	308	316	13	1	-8	88	90	6	2	8	152	142	3	3	-3	151	142
2	0	0	217	192	3	1	2	160	163	13	1	-6	88	76	6	2	9	131	124	± 3	3	-1	4 Cl	511
2	0	2	89	97	3	1	4	236	256	13	1	-5	90	98	6	2	11	120	111	3	3	1	167	164
4	0	-16	68	67	3	1	5	301	320	13	1	-4	90	95	8	2	-12	84	81	3	3	3	330	381
4	0	-12	91	93	3	1	6	231	254	13	1	-2	92	96	8	2	-8	112	129	3	3	5	165	165
4	0	-8	168	180	3	1	8	142	143	13	1	-1	92	110	8	2	-4	121	123	3	3	7	296	303
4	0	-4	124	117	3	1	9	211	191	$\cdots 0$	2	1	213	315	8	2	-1	93	88	3	3	9	87	80
4	0	0	123	115	3	1	10	159	152	* 0	2	2	254	327	8	2	0	123	122	3	3	11	218	211
4	0	2	109	96	3	1	12	137	153	0	2	3	147	155	8	2	4	137	143	3	3	13	72	78
4	0	4	133	146	3	1	13	127	140	0	2	5	239	253	8	2	8	81	88	5	3	-14	64	63
4	0	8	74	77	3	1	14	81	88	0	2	6	321	328	10	2	-13	64	69	5	3	-13	93	90
4	0	12	83	78	5	1	-14	81	70	0	2	7	256	248	10	2	-11	87	91	5	3	-9	113	108
A	0	-14	211	204	5	1	-9	105	108	0	2	9	120	139	10	2	-9	101	101	5	3	-8	98	103
6	0	-12	73	79	5	1	-8	111	119	0	2	10	195	194	10	2	-8	91	103	5	3	-6	77	76
6	0	-10	298	300	5	1	-6	140	132	0	2	11	149	153	10	2	-7	94	95	5	3	-5	136	131
6	0	-8	154	156	5	1	-5	124	123	0	2	13	154	150	10	2	-5	104	110	5	3	-4.	82	87
6	0	-6	372	381	5	1	-2	160	151	0	2	14	140	141	10	2	-4	112	102	5	3	-2	130	126
6	0	-4	117	165	5	1	-1	91	89	0	2	15	72	84	10	2	-3	112	119	5	3	-1	172	166
46	0	-2	532	512	5	1	0	164	166	2	2	-14	99	83	10	2	-1	96	99	5	3	0	105	95
6	0	0	158	147	5	1	1	69	68	2	2	-6	140	146	10	2	0	95	100	5	3	2	75	78.
6	0	2	404	401	5	1	2	59	59	2	2	-4	91	92	10	2	1	100	103	5	3	3	90	85
6	0	4	161	169	5	1		100	96	2.	2	-2	119	111	10	2	3	110	102	5	3	4	95	106
6	0	6	289	295	5	1	4	106	99	2	2	2	119	123	10	2	4	101	111	5	3	6	95	78
6	0	8	82	88	5	1	5	71	77	2	2	6	178	170	10	2	5	80	80	5	3	7	95	74
6	0	10	238	216	5	1	6	120	114	2	2	10	98	92	12	2	-10	66	74	5	3	10	70	65
8	0	-14	92	98	5	1	12	72	63	2	2	14	74	68	12	2	-9	79	68	5	3	11	63	61
8	0	-6	113	112	7	1	-15	82	70	4	2	-15	72	72	12	2	-7	101	109	7	3	-13	82	91
8	0	-2	181	174	7	1		121	111	4	2	-9	107	119	12	2	-6	86	87	7	3	-9	152	148
8	0	6	88	77	7	1	-7	105	91	4	2	-7	105	109	12	2	-5	87	95	7	3	-5	120	123
10	0	-12	69	65	7	1	-6	88	74	4	2	-6	87	88	12	2	-3	76	71	7	3	-4	96	87
10	0	-10	167	180	7	1	-4	96	93	4	2	-5	56	61	12	2	-2	75	69	7	3	-1	127	126
10	0	-8	103	98	7	1	-3	178	167.	4	2	-4	76	78	12	2	-1	93	106	7	3	3	125	130
10	0	-6	175	172	7	1	-2	134	130	4	2	-3	176	166	12	2	1	87	93	7	3	7	89	77
10	0	-4	106	92	7	1	0	97.	84	4	2	-2	98	83	12	2	2	16	77	9	3	-11	149	152
10	0	-2	206	197	7	1	1	133	131	4	2	-1	162	159	1	3	-14	66	69	9	3	-7	206	199
10	0	2	154	161	7	1	2	90	79	4	2	1	52	59	2	3	-8	125	115	9	3	-5	67	67
10	0	6	111	120	7	1		110	104	4	2	2	136	116	1	3	-7	81	84	9	3	-3	224	206
12	0	-8	143	136	7	1	5	112	118	4	2	3	141	137	1	3	-6	105	104	9	3	-1	87	66
12	0	-4	152	147	7	1	9	101	98	4.	2	5	110	124	1	3	-5	86	90	9	3	1	213	206.
12	0	0	156	175	9	1	-14	87	81	$4{ }^{\circ}$	2	6	117	103	1	3	-4	58	59	9	3	5	151	155
1	1	-3	83	89	9	1	-13	123	113	4	2	11	82	77	1	3	-3	60	70	11	3	-11	55	65
1	1	-1	178	188	9		-12	115	111	6	2	-15	112	109	1	3	-2	149	166	11	3	-10	61	64
1	1	1	19	74	9		-10	132	127	6	2	-13	130	126	1	3	-1	84	81	11	3	-7	89	98
1	1	3	119	137	9	1	-9	147	130	6	2	-12	142	144	1	3	0	132	143	11	3	-6	73	66
1	1	7	120	114	9	1	-8	112	117	6	2	-11	137	139	1	3	2	50	58	11	3	-4	81	77
1	1		97	91	9	1		159	144	6	2	-9	167	173	1	3	3	114.	121	11	3	-3	86	105
3	1	-16	80	88.	9	1	-5	168	165	6	2	-8	209	214	1	3	4	123	126	11	3	0	70	59
3		-15	144	137	9	1	-4	157	160	6	2	-7	195	150	1	3	5	54	62	12	3	2	59	71
3		-14	174	150	9	1	-2	147	133															

TABLE IV
Atomic Parameters in $\mathrm{CaTa}_{4} \mathrm{O}_{11}$-Space Group $\mathrm{P6}_{3} 22$

Atom	Position	x	y	z	B
$6 \mathrm{Ta}(\mathrm{I})$	$6(g)$	0.3592 ± 3	0	0	0.64 ± 5
$2 \mathrm{Ta}(\mathrm{II})$	$2(c)$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{4}$	0.60 ± 6
2 Ca	$2(d)$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{3}{4}$	1.5 ± 2
12 O (I)	$12(i)$	0.375 ± 4	0.945 ± 3	0.156 ± 2	0.8 ± 3
6 O (II)	$6(g)$	0.754 ± 4	0	0	0.9 ± 4
$4 \mathrm{O}(\mathrm{III})$	$4(f)$	$\frac{1}{3}$	$\frac{2}{3}$	0.966 ± 2	0.7 ± 4

TABLE V
Observed and Calculated Structure Factors for $\mathrm{CaTa}_{4} \mathrm{O}_{11}$
Asterisk reflections were not included in the final refinement. The columns give $h, k, l,\left|F_{\text {obs }}\right|$ and $\left|F_{\text {calc }}\right|$. For all nonobserved reflections, $\left|F_{\text {calc }}\right|<\min$. observable $\left|F_{\text {obs }}\right|$.

* 0	0	2	172	251	40	3	2	140	159	* 1	1	6	228	272	* 1	4	1	139	154	2	3	2	108	107
* 0	0	4	327	483	* 0	3	4	252	363	* 1	1	7	198	232	* 1	4	2	156	169	2	3	3	71	70
* 0	0	6	236	262	\cdots	3	6	133	144		1	9	156	169	* 1	4	3	147	155	2	3	5	63	58
* 0	0	8	320	394	* 0	3	8	248	294	$\cdots 1$	1	10	178	193	* 1	4	5	134	142	2	3	6	111	109
0	0	10	113	117	0	3	10	98	92	$\cdots 1$	1	11	146	158	± 1	4	6	143	15 C	2	3	7	59	109 63
* 0	0	12	241	294	$\cdots 0$	3	12	206	222	1	1	12	34	31	1	4	7	127	129	2	3	9	43	43
0	0	14	109	109	0	3	14	75	74	* 1	1	13	153	150	1	4	9	120	121	2	3	10	82	73
0	1	0	122	131	0	4	0	105	119	*1	1	14	146	150	1	4	10	125	132	2	3	11	53	4
0	1	1	81	84	0	4	1	69	71	1	1	15	108	110	1	4	11	105	106	2	3	12	21	73
0	1	2	53	54	0	4	3	61	55	1	2	0	82	77	1	5	1	75	78	2	4	0	96	90
0	1	3	85	82	0	4	4	92	93	1	2	1	110	111	1	5	2	42	43	2	4	1	99	49
0	1	4	87	82	0	4	7	47	45	1	2	2	55	53	1	5	3	77	79	2	4	3	98	98
0	1	5	40	39	0	4	8	84	81	1	2	3	98	96	1	5	4	41	27	2	4	4	73	71
0	1	6	34	31	0	4	9	42	44	1	2	4	68	+7	1.	5	5	75	76	2	4	5	94	96
0	1	7	68	69	0	4	11	54	54	1	2	5	101	99	1	5	6	45	40	2	4	7	94	94
0	1	8	67	69	0	4	12	67	65	1	2	6	51	49	1	5	7	71	17	2	4	8	64	t.3
0	I	9	51	49	0	5	0	72	76	1	2	7	108	205	1	5	8	27	21	2	4	5	73	6,3 7
0	1	10	36	39	0	5	1	50	49	1	2	8	57	48	1	5	9	52	57	2	5	1	95	101
0	1	11	54	58	$* 0$	5	2	131	144	1	2	9	6 C	6 C	1	6	0	43	86	2	5	2	116	110
0	1	12	51	51	0	5	3	48	49	1	2	10	46	42	,	6	1	et	88	2	5	3	104	109
0	1	13	40	40	0	5	4	67	58	1	2	11	63	63	1	6	2	33	30	2	5	5	104 97	48
0	1	14	22	22	0	5	5	37	34	1	$?$	$1 ?$	33	32	1	6	3	82	85	2	5	4	97	101
0	1	15	34	32	* 0	5	6	151	141	1	2.	13	63	61	1	6	4	78	87	- 3	3	\bigcirc	184	235
C	2	1	56	57	0	5	7	43	45	1	2	14	34	32	* 2	2	1	179	213	3	3	2	78	+73
6	2	2	98	99	0	5	8	54	58	1	3	0	119	124	+2.	2	2	14:	216	$\cdots 3$	3	4	155	225
0	2	3	78	79	0	5	7	33	34	1	3	1	106	105	* 2	2	3	192	120	3	3	6	5 57	53
0	2	4	40.	36	0	5	10	108	106	1	3	3	82	82	*2	2	5	178	190	-3	3	-	174	119
0	2	5	57^{\prime}	57	- 0	6	0	153	182	1	3	4	97	96	* 2	2	6	181	201	*3	3	10	174 5	194 53
0	2	6	113	122	0	6	2	65	58	1	3	5	81	75	$\div 2$	2	7	163	175	3	4	0	85	89
0	2	7	74	72	- 0	6	4	171	185	1	3	7	91	89	*2	$?$	4	140	152	3	4	1	75	70
0	2	${ }^{9}$	41	41	0	6	6	40	39	1	3	8	83	82	$\cdots 2$	2	10	155	154	3	4	2	2ε	26
0	2	10	75	72	1	1	0	38	36	1	3	9	60	-61	* 2	2	11	137	134	3	4	3	64	62
0	2	11	44	47	* 1	1	1	197	287	1	3	11	66	-67	2	2	13	115	118	3	4	4	88	88
0	2	13	40	31	* 1	1	$?$	207	281	1	3	12	67	64	2	3	n	31	2.9	3	4	5	53	55
0 $\times 0$	2	14	72 24	65 425	*	1	3	170	207 240	1	3	13	61	59	2.	3	1	67	66	3	4	7	61	61
* 0	3	0	247	425	$\cdots 1$	1	5	191	240														61	6

The atomic arrangement in these layers is almost identical with the one present in $\mathrm{U}_{3} \mathrm{O}_{8}$, as given by Loopstra (12). In the latter structure, however, the unit cell is only one layer high and the pentagonal bipyramids share vertex atoms. This is not the case in $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$ and $\mathrm{CaTa}_{4} \mathrm{O}_{11}$. Here the rest of the Me atoms are situated between the layers, octahedrally surrounded by six oxygens which are vertex atoms of the pentagonal bipyramids, viz., three in the layer below and three in the layer above. Also, the Na and Ca atoms are situated between the layers and surrounded by six vertex oxygens which form a very distorted octahedron. Hence, the structures could be described as consisting of layers of pentagonal bipyramids alternating with layers of octahedra (Fig. 2). The Nb octahedron is quite
regular, the $\mathrm{Nb}-\mathrm{O}$ distances being $1.95-2.00 \AA$ and the $\mathrm{O}-\mathrm{O}$ distances $2.75-2.85 \AA$. The $\mathrm{Nb}-\mathrm{O}$ distances are in very good agreement with those reported by Gatehouse and Wadsiey (13) for octahedral coordination. In $\mathrm{CaTa}_{4} \mathrm{O}_{11}$ the $\mathrm{Ta}-\mathrm{O}$ bond-lengths of the octahedron are all $1.98 \AA$ but the $\mathrm{O}-\mathrm{O}$ distances vary a little more: $2.60-3.04 \AA$. This is not surprising since the Nb octahedron is surrounded by six Na poiyhedra while there are only three polyhedra containing Ca around Ta . The edges in common with these are shorter $(2.60 \AA)$ than the other edges.
In addition to the six vertex oxygens the sodium atoms in $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$ also have a seventh close oxygen neighbour situated outside one of the large faces of the flattened octahedron (cf. Fig. 2). This

TABLE VI
Interatomic Distances (\AA) for $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$ and
$\mathrm{CaTa}_{4} \mathrm{O}_{11}$

$\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$	
Nb (I) pentagonal bipyramid	
$\mathrm{Nb}(\mathrm{I})-\mathrm{O}(\mathrm{I})$	1.96 ± 2
Nb (I)-O(II)	1.99 ± 2
$\mathrm{Nb}(\mathrm{I})-\mathrm{O}$ (IV)	2.04 ± 3
$\mathrm{Nb}(\mathrm{I})-\mathrm{O}(\mathrm{IV})$	2.38 ± 2
$\mathrm{Nb}(\mathrm{I})-\mathrm{O}(\mathrm{V})$	1.96 ± 3
$\mathrm{Nb}(\mathrm{I})-\mathrm{O}(\mathrm{V})$	2.02 ± 3
$\mathrm{Nb}(\mathrm{I})-\mathrm{O}(\mathrm{V})$	2.01 ± 1
O (I)-O(IV)	3.04 ± 4
O(I)-O(IV)	2.97 ± 3
$\mathrm{O}(\mathrm{I})-\mathrm{O}(\mathrm{V})$	2.81 ± 3
$\mathrm{O}(\mathrm{I})-\mathrm{O}(\mathrm{V})$	2.69 ± 3
$\mathrm{O}(\mathrm{I})-\mathrm{O}(\mathrm{VI})$	2.76 ± 2
O (II)-O(IV)	2.77 ± 3
O(II)-O(IV)	2.98 ± 3
O(II)-O(V)	2.69 ± 4
O (II)-O(V)	2.85 ± 3
$\mathrm{O}(\mathrm{II})-\mathrm{O}(\mathrm{VI})$	3.06 ± 2
$2 \times \mathrm{O}$ (IV)-O(V)	2.39 ± 3
O(IV)-O(V)	2.39 ± 4
O(IV)-O(VI)	2.68 ± 5
$\mathrm{O}(\mathrm{V})-\mathrm{O}(\mathrm{VI})$	2.43 ± 4
Nb (II) pentagonal bipyramid	
$2 \times \mathrm{Nb}$ (II)-O(III) 1.99 ± 2	
$2 \times \mathrm{Nb}$ (II)-O(IV) 1.98 ± 3	
$2 \times \mathrm{Nb}$ (II)-O(V) 2.07 ± 3	
$\mathrm{Nb}(\mathrm{II})-\mathrm{O}(\mathrm{VI}) 2.41 \pm 6$	
$2 \times$ O(III)-O(IV) 2.71 ± 3	
$2 \times$ O(III)-O(IV) 3.02 ± 3	
$2 \times$ O(III)-O(V) 2.89 ± 3	
$2 \times O$ (III) O (V) $\quad 2.76 \pm 3$	
$2 \times$ O(III)-O(VI) 3.02 ± 5	
O(IV)-O(IV) 2.71 ± 4	
$2 \times \mathrm{O}$ (IV)-O(V) 2.39 ± 4	
$2 \times \mathrm{O}(\mathrm{V})-\mathrm{O}(\mathrm{VI}) 2.43 \pm 4$	

Table VI (continued)

$\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$	$\mathrm{CaTa}_{4} \mathrm{O}_{11}$
Na polyhedron	
$\mathrm{Na}-\mathrm{O}(\mathrm{I}) \quad 2.52 \pm 3$	
$\mathrm{Na}-\mathrm{O}(\mathrm{I})$	2.66 ± 3
$\mathrm{Na}-\mathrm{O}(\mathrm{II})$	2.48 ± 3
$\mathrm{Na}-\mathrm{O}(\mathrm{II})$	2.68 ± 2
$\mathrm{Na}-\mathrm{O}(\mathrm{III})$	2.51 ± 2
$\mathrm{Na}-\mathrm{O}(\mathrm{III})$	2.63 ± 3
$\mathrm{Na}-\mathrm{O}(\mathrm{V})$	2.72 ± 3

is the oxygen that deviates from the equatorial plane of the pentagonal bipyramids, which brings it closer to the sodium atom. This type of sevencoordination is found in the $\mathrm{A}-\mathrm{M}_{2} \mathrm{O}_{3}$ structure type of $\mathrm{La}_{2} \mathrm{O}_{3}$ and other rare earth metal oxides (14), (15), and also in $\mathrm{NbOF}_{6}{ }^{3-}$ (16).

In $\mathrm{CaTa}_{4} \mathrm{O}_{11}$ there are two types of interstices corresponding to the sodium position in $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$. One corresponds to a six-coordinated void while the other is eight-coordinated, with an oxygen atom outside both of the large faces of the deformed octahedron. The latter position is occupied by the calcium atoms. This structural difference between $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$ and $\mathrm{CaTa}_{4} \mathrm{O}_{11}$ is due to the difference in the relative positions of the two layers of pentagonal bipyramids, which is reflected in the change of symmetry from one compound to the other. Figure 3 shows a projection, perpendicular to the $a b$ plane, of two successive equatorial planes of pentagonal bipyramids for each structure. The arrangement of niobium and tantalum is approximately the same, but the oxygen pentagons are not arranged in the same way. The surroundings of the octahedrally coordinated $\mathrm{Nb}(\mathrm{Ta})$ atoms are similar in both structures but while sodium has a seventh oxygen either above or below calcium has both one above and one below since the positions of the O(III) atoms in the two layers always coincide in the projection (cf. Fig. 3). The coordination figures of sodium and calcium are shown in Fig. 4.

This type of symmetry variation, where two layers change their relative positions when cations between them demand different coordination numbers, has been described by Wilhelmi (17) for the $\mathrm{MCr}_{3} \mathrm{O}_{8}$ family, where $\mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Tl}$, and Cs.

The pentagonal bipyramid as a coordination figure around niobium is found in $\mathrm{LiNb}_{6} \mathrm{O}_{15} \mathrm{~F}$ (18), $\mathrm{NaNb}_{6} \mathrm{O}_{15} \mathrm{~F}$ and the isomorphous $\mathrm{NaNb}_{6} \mathrm{O}_{15} \mathrm{OH}$

Fig. 1. The atoms in the planes $z=0.25$ and $z=0.75$ for $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$. Atoms marked with + or - are situated about $0.4 \AA$ above and below the planes, respectively.

a

b

c

Fig. 2. (a) Layer of pentagonal bipyramids. (b) Layer of octahedra in $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$. Small ones contain Nb and big ones Na . The circles represent the seventh close oxygen neighbour of Na . (c) The same type of layer for $\mathrm{CaTa}_{4} \mathrm{O}_{11}$. The circles represent the seventh and eighth close oxygen neighbours of Ca .
(19) and in the region $\mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{WO}_{3}-\mathrm{WO}_{3}$ (20), (21). In these structures the pentagonal bipyramids share edges with octahedra. The oxide fluorides are built up of blocks each consisting of a quite regular pentagonal bipyramid sharing edges with five octahedra. The building blocks are joined by sharing corners. The niobium wolfram oxides are closely related to the tetragonal potassium wolfram bronze structure (22), where niobium and oxygen atoms alternate inside pentagonal oxygen tunnels. $\mathrm{Ta}_{3} \mathrm{O}_{7} \mathrm{~F}$ has one form isomorphous with $\mathrm{LiNb}_{6} \mathrm{O}_{15} \mathrm{~F}$ and another isomorphous with $\mathrm{U}_{3} \mathrm{O}_{8}$ (23).

Sevenfold coordination is also found in the ions $\mathrm{NbF}_{7}{ }^{2-}$ and $\mathrm{TaF}_{7}{ }^{2-}$ (24) the configuration being a triangular prism with one oxygen outside a prism face; and in $\mathrm{NbOF}_{6}{ }^{3-}(16)$ which has the coordination found in $\mathrm{A}-\mathrm{M}_{2} \mathrm{O}_{3}$.

A compound $\mathrm{CaNb}_{4} \mathrm{O}_{11}$ analogous with $\mathrm{CaTa}_{4} \mathrm{O}_{11}$ does evidently not form (25). For the system $\mathrm{Na}_{2} \mathrm{O}-\mathrm{Ta}_{2} \mathrm{O}_{5}$ there are several pieces of information summarized by Whiston and Smith (26). According to this work, the compound $\mathrm{Na}_{2} \mathrm{Ta}_{4} \mathrm{O}_{11}$ is reported as tetragonal by King, Schultz, Durbin, and Duckworth and by Whiston and Smith, and as orthorhombic by Reisman. A sample prepared from $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{Ta}_{2} \mathrm{O}_{5}$ in air at $1000^{\circ} \mathrm{C}$ gave a powder photograph which could not be indexed according to these reports, but had a distinct resemblance to the patterns of $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$ and $\mathrm{CaTa}_{4} \mathrm{O}_{11}$. It could be indexed with the same monoclinic unit cell as $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$ but this gave a lot of double-indexed lines which were sharp and suggested higher symmetry. Thus it was found to be rhombohedral, probable space group $R \overline{3} c$ with

a

b

Fig. 3. Projection perpendicular to the $a b$ plane of two successive equatorial planes of pentagonal bipyramids for (a) $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$, and (b) $\mathrm{CaTa}_{4} \mathrm{O}_{11}$.

a

b

Fig. 4. Clinographic projection of (a) the sodium, and (b) the calcium coordination figure. The figures are rotated 5° around the a and b axes (orthohexagonal axes for $\mathrm{CaTa}_{4} \mathrm{O}_{11}$), starting from a view perpendicular to the $a b$ plane.
hexagonal axes $a=6.209 \pm 1$ and $c=36.618+2 \AA$ (rhombohedral cell dimensions $a=12.722 \AA$ and $\alpha=28.25^{\circ}$).

The approximately trigonal character of the $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$ structure is obvious from Fig. 3. The inclination of the monoclinic c axis to the $a b$ plane is such that the structure may be described as only moderately deviating from an hexagonal arrangement with unit cell dimensions corresponding to the a axis and three times the c axis of the $\mathrm{CaTa}_{4} \mathrm{O}_{11}$ unit cell. This indicates that the stacking of the layers of polyhedra is essentially the same in $\mathrm{Na}_{2} \mathrm{Ta}_{4} \mathrm{O}_{11}$ and $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$. The difference in symmetry, however, may make it appropriate to characterize the structure of the latter as a somewhat distorted version of the former. Further studies of $\mathrm{Na}_{2} \mathrm{Ta}_{4} \mathrm{O}_{11}$ are in progress.

Acknowledgments

My sincere gratitude to Professor Arne Magnéli for his stimulating interest in this work and valuable comments on
the manuscript and Dr. Sten Andersson, Research Institute of National Defense, for giving me his single-crystal data of $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$ and for his kind interest.
This work has taken place within a research program supported by the Swedish Natural Science Research Council. Permission for the use of the computers FACIT EDB and CD 3600 was granted by the Computer Division of the National Swedish Rationalization Agency. For the use of the computer IBM 1800 thanks are due to the Tri-Centennial Fund of the Bank of Sweden.

References

1. A. D. Wadsley, in "Non-Stoichiometric Compounds" (L. Mandelcorn, Ed.), Chap. 3, Academic Press, New York/London, 1964.
2. A. D. Wadsley, Acta Cryst. 17, 623 (1964).
3. M. Gasperin, Acta Cryst. 11, 739 (1958).
4. L. Jahnberg, Acta Chem. Scand. 17, 2548 (1963).
5. M. Gasperin, BuIl. Soc. Fr. Mineral. Crist. 86, 115 (1963).
6. S. Andersson, Acta Chem. Scand. 21, 1777 (1967).
7. D. T. Cromer and J. T. Waber, Acta Cryst. 18, 104 (1965).
8. International Tables for X-ray Crystallography, Vol. III (C. H. Macgillavry and G. D. Rieck, Eds.), Table 3.3.1 A and 3.3.1 B, Kynoch Press, Birmingham, England, 1962.
9. T. Suzuki, Acta Cryst. 13, 279 (1960).
10. A. F. Andresen, Acta Cryst. 11, 612 (1958).
11. W. H. Zachariasen, Acta Cryst. 16, 1139 (1963).
12. B. O. Loopstra, Acta Cryst. 17, 651 (1964).
13. B. M. Gatehouse and A. D. Wadsley, Acta Cryst. 17, 1545 (1964).
14. L. Pauling, Z. Krist. 69, 415 (1929).
15. W. C. Koehler and E. O. Wollan, Acta Cryst. 6, 741 (1953).
16. M. B. Williams and J. L. Hoard, J. Amer. Chem. Soc. 64, 1139 (1942).
17. K.-A. Wilhelmi, Inaugural Dissertation, Stockholm, 1966.
18. M. Lundberg, Acta Chem. Scand. 19, 2274 (1965).
19. S. Andersson, Acta Chem. Scand. 19, 2285 (1965).
20. A. Sleight, Acta Chem, Scand. 20, 1102 (1966).
21. N. C. Stephenson, Acta Cryst. B24, 637 (1968).
22. A. Magnéli, Ark. Kemi 1, 213 (1949).
23. L. Jahnberg and S. Andersson, Acta Chem. Scand. 21, 615 (1967).
24. J. L. Hoard, J. Amer. Chem. Soc. 61, 1252 (1939).
25. M. Ibrahim, N. F. H. Bright and J. F. Rowland, J. Amer. Ceram. Soc. 45, 329 (1962).
26. C. D. Whiston and A. J. Smith, Acta Cryst. 19, 169 (1965).
